Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 16

Answer

\begin{aligned} \int p^{4} e^{-p} d p =-(p^4 +4p^3 +12p^2 +24 +24)e^{-p}+C \end{aligned}

Work Step by Step

Given $$\int p^{4} e^{-p} d p $$ So, we have \begin{array}{|c c c|}\hline Differentiation && {Integration} \\ \hline p^4 & + & e^{-p} \\ &\searrow&\\ \hline 4p^3 & - & -e^{-p} \\ &\searrow&\\ \hline 12p^2 &+ & e^{-p} \\ &\searrow&\\ \hline 24p & - &- e^{-p} \\ &\searrow&\\ \hline 24 &+ & e^{-p} \\ &\searrow&\\ \hline 0 & & -e^{-p} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int p^{4} e^{-p} d p\\ &=-p^4e^{-p}-4p^3e^{-p}-12p^2e^{-p}-24e^{-p}-24e^{-p}+C\\ &=-(p^4 +4p^3 +12p^2 +24 +24)e^{-p}+C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.