Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 40

Answer

$$ - \frac{1}{3}\cos {x^3} + C $$

Work Step by Step

$$\eqalign{ & \int {{x^2}\sin {x^3}} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = {x^3},\,\,\,\,du = 3{x^2}dx,\,\,\,\,dx = \frac{{du}}{{3{x^2}}} \cr & {\text{Then}}{\text{,}} \cr & \int {{x^2}\sin {x^3}} dx = \int {{x^2}\sin u} \left( {\frac{{du}}{{3{x^2}}}} \right) \cr & {\text{Cancel common factor }}{x^2} \cr & = \int {\sin u} \left( {\frac{{du}}{3}} \right) \cr & = \frac{1}{3}\int {\sin u} du \cr & {\text{integrating}} \cr & = - \frac{1}{3}\cos u + C \cr & {\text{replacing }}u = {x^3} \cr & = - \frac{1}{3}\cos {x^3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.