Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 26

Answer

$$\frac{4}{{15}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {x\sqrt {1 - x} } dx \cr & {\text{integrate by substitution: set }}u = 1 - x,\,\,\,\,\,x = 1 - u,\,\,\,\,dx = - du \cr & {\text{write in terms of }}u \cr & \int {x\sqrt {1 - x} } dx = \int {\left( {1 - u} \right)\sqrt u \left( { - du} \right)} \cr & = \int {\left( {u - 1} \right){u^{1/2}}} du \cr & = \int {\left( {{u^{3/2}} - {u^{1/2}}} \right)} du \cr & {\text{integrating}} \cr & = \frac{{{u^{5/2}}}}{{5/2}} - \frac{{{u^{3/2}}}}{{3/2}} + C \cr & = \frac{2}{5}{u^{5/2}} - \frac{2}{3}{u^{3/2}} + C \cr & {\text{write in terms of }}x \cr & = \frac{2}{5}{\left( {1 - x} \right)^{5/2}} - \frac{2}{3}{\left( {1 - x} \right)^{3/2}} + C \cr & {\text{then}}{\text{,}} \cr & \int_0^1 {x\sqrt {1 - x} } dx = \left( {\frac{2}{5}{{\left( {1 - x} \right)}^{5/2}} - \frac{2}{3}{{\left( {1 - x} \right)}^{3/2}}} \right)_0^1 \cr & = \left( {\frac{2}{5}{{\left( {1 - 1} \right)}^{5/2}} - \frac{2}{3}{{\left( {1 - 1} \right)}^{3/2}}} \right) - \left( {\frac{2}{5}{{\left( {1 - 0} \right)}^{5/2}} - \frac{2}{3}{{\left( {1 - 0} \right)}^{3/2}}} \right) \cr & = \left( 0 \right) - \left( {\frac{2}{5} - \frac{2}{3}} \right) \cr & = \frac{4}{{15}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.