Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 10

Answer

\begin{aligned} \int( x^{2}-2x+1) e^{2x} d x =\frac{1}{4} e^{2x}(2x^2-6x+5)+C \end{aligned}

Work Step by Step

Given $$\int( x^{2}-2x+1) e^{2x}d x $$ So, we have \begin{array}{|c c c|}\hline Differentiation && {Integration} \\ \hline x^{2}-2x+1 & + & e^{2x} \\ &\searrow&\\ \hline 2x-2 &- &\frac{1}{2} e^{2x} \\ &\searrow&\\ \hline 2 & + & \frac{1}{4} e^{2x} \\ &\searrow&\\ \hline 0 & &\frac{1}{8} e^{2x} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int( x^{2}-2x+1) e^{2x} d x\\ &=+\frac{1}{2} ( x^{2}-2x+1) e^{2x}-\frac{1}{4}( 2x-2) e^{2x}+\frac{2}{8} e^{2x}\\ &=+\frac{1}{2} ( x^{2}-2x+1) e^{2x}-\frac{1}{2}( x-1) e^{2x}+\frac{1}{4} e^{2x}\\ &=\frac{1}{4} e^{2x}(2x^2-4x+2-2x+2+1)+C\\ &=\frac{1}{4} e^{2x}(2x^2-6x+5)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.