Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 22

Answer

$$ - \frac{1}{2}{e^{ - y}}\cos y - \frac{1}{2}{e^{ - y}}\cos y + C $$

Work Step by Step

$$\eqalign{ & \int {{e^{ - y}}\cos y} dy \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = {e^{ - y}},\,\,\,\,du = - {e^{ - y}}dy,\,\,\,\,\,dv = \cos ydy,\,\,\,\,v = \sin y \cr & \cr & {\text{Integration by parts then gives}} \cr & \int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y - \int {\left( {\sin y} \right)\left( { - {e^{ - y}}} \right)dy} \cr & \int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y + \int {{e^{ - y}}\sin ydy} \cr & \cr & {\text{Integration by parts again}} \cr & \,\,\,\,\,{\text{Let }}u = {e^{ - y}},\,\,\,\,du = - {e^{ - y}}dy,\,\,\,\,\,dv = \sin ydy,\,\,\,\,v = - \cos y \cr & \int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y + \left( { - {e^{ - y}}\cos y - \int {\left( { - \cos y} \right)\left( { - {e^{ - y}}} \right)} dy} \right) \cr & \int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y - {e^{ - y}}\cos y - \int {{e^{ - y}}\cos y} dy \cr & \cr & {\text{The unknown integral now appears on both sides of the equation}}{\text{. }} \cr & {\text{Adding the integral to both sides and adding the constant }}C{\text{ we obtain}} \cr & \int {{e^{ - y}}\cos y} dy + \int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y - {e^{ - y}}\cos y + C \cr & 2\int {{e^{ - y}}\cos y} dy = - {e^{ - y}}\cos y - {e^{ - y}}\cos y + C \cr & {\text{Divide both sides by 2}} \cr & \int {{e^{ - y}}\cos y} dy = - \frac{1}{2}{e^{ - y}}\cos y - \frac{1}{2}{e^{ - y}}\cos y + C \cr} $$
This answer is currently locked

Someone from the community is currently working feverishly to complete this textbook answer. Don’t worry, it shouldn’t be long.