Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 5

Answer

$$\int_{1}^{2} x \ln x d x =2 \ln 2-\frac{3}{4} $$

Work Step by Step

Given $$\int_{1}^{2} x \ln x d x $$ Now, using integration by parts: $$ u=\ln x \Rightarrow du= \frac{1}{x}dx $$ $$ dv=x dx \Rightarrow v= \frac{x^2}{2} $$ So, we get \begin{aligned} I&=\int_{1}^{2} x \ln x d x\\ &=uv|_{1}^{2}- \int_{1}^{2}vdu\\ &=\frac{x^{2} \ln x}{2}|_{1}^{2}-\frac{1}{2} \int_{1}^{2} \frac{x^{2}}{x} d x\\ &=\frac{x^{2} \ln x}{2}-\frac{1}{2} \int_{1}^{2} \frac{x^{2}}{x} d x\\ &=\frac{2^{2} \ln2}{2}-\frac{1^{2} \ln1}{2}-\frac{1}{2} \int_{1}^{2}xd x\\ &=\frac{2^{2} \ln2}{2}-\frac{1^{2} \ln1}{2}-\frac{x^2}{4} |_{1}^{2} \\ &=2 \ln 2-\frac{2^2}{4}+\frac{1^2}{4} \\ &=2 \ln 2-\frac{3}{4} \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.