Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 31

Answer

$$\frac{1}{2}\ln \left| {\sec {x^2} + \tan {x^2}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {x\sec {x^2}} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = {x^2},\,\,\,\,du = 2xdx,\,\,\,\,dx = \frac{{du}}{{2x}} \cr & {\text{Then}}{\text{,}} \cr & \int {x\sec {x^2}} dx = \int {x\sec u} \left( {\frac{{du}}{{2x}}} \right) \cr & {\text{Cancel common factor }}x \cr & =\frac{1}{2} \int {\sec u} du \cr & {\text{integrating}} \cr & = \frac{1}{2}\ln \left| {\sec u + \tan u} \right| + C \cr & {\text{replacing }}u = {x^2} \cr & =\frac{1}{2} \ln \left| {\sec {x^2} + \tan {x^2}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.