Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 45

Answer

$$2\sqrt x \sin \sqrt x + 2\cos \sqrt x + C $$

Work Step by Step

$$\eqalign{ & \int {\cos \sqrt x } dx \cr & {\text{Let }}t = \sqrt x,\,\,\,\,\,dt = \frac{1}{{2\sqrt x }}dx,\,\,\,\,\,\,dx = 2\sqrt x dt \cr & \int {\cos \sqrt x } dx = \int {\cos t} \left( {2\sqrt x } \right)dt \cr & = \int {2t\cos t} dt \cr & \cr & {\text{Using integration by parts method }} \cr & {\text{Let }}u = 2t,\,\,\,\,du = 2dt,\,\,\,\,dv = \cos tdt,\,\,\,\,v = \sin t \cr & {\text{Integration by parts then gives}} \cr & \int {2t\cos t} dt = 2t\sin t - \int {\sin t} \left( {2dt} \right) \cr & \int {2t\cos t} dt = 2t\sin t - 2\int {\sin t} dt \cr & \int {2t\cos t} dt = 2t\sin t + 2\cos t + C \cr & {\text{write in terms of }}x{\text{: substitute }}\sqrt x {\text{ for }}t \cr & \int {\cos \sqrt x } dx = 2\sqrt x \sin \sqrt x + 2\cos \sqrt x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.