Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 38

Answer

$$\frac{1}{3}{x^3}{e^{{x^3}}} - \frac{1}{3}{e^{{x^3}}} + C $$

Work Step by Step

$$\eqalign{ & \int {{x^5}} {e^{{x^3}}}dx \cr & = \int {{x^3}} {e^{{x^3}}}{x^2}dx \cr & \,\,\,\,\,{\text{Let }}t = {x^3},\,\,\,\,dt = 3{x^2}dx, \cr & \int {{x^3}} {e^{{x^3}}}{x^2}dx = \int t {e^t}\left( {\frac{1}{3}dt} \right) \cr & = \frac{1}{3}\int t {e^t}dt \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = t,\,\,\,\,du = dt,\,\,\,\,dv = {e^t}dt,\,\,\,\,v = {e^t} \cr & {\text{Integration by parts then gives}} \cr & \frac{1}{3}\int t {e^t}dt = \frac{1}{3}\left( {t{e^t} - \int {{e^t}} dt} \right) \cr & \frac{1}{3}\int t {e^t}dt = \frac{1}{3}t{e^t} - \frac{1}{3}\int {{e^t}} dt \cr & \frac{1}{3}\int t {e^t}dt = \frac{1}{3}t{e^t} - \frac{1}{3}{e^t} + C \cr & \cr & {\text{write in terms of }}x{\text{: substitute }}{x^3}{\text{ for }}t \cr & \int {{x^5}} {e^{{x^3}}}dx = \frac{1}{3}{x^3}{e^{{x^3}}} - \frac{1}{3}{e^{{x^3}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.