Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 19

Answer

\begin{aligned} \int x^5 e^{x} d x = e^{x}(x^5 -5x^4 +20x^3 -60x^2 +120x -120 )+C \end{aligned}

Work Step by Step

Given $$\int x^{5} e^{x}d x $$ So, we have \begin{array}{|c c c c|}\hline & Differentiation && {Integration} \\ \hline + \quad \rightarrow&x^{5} & & e^{x} \\ &&\searrow&\\ \hline - \quad \rightarrow& 5x^4 & &e^{x} \\ &&\searrow&\\ \hline + \quad \rightarrow&20x^3& &e^{x} \\ &&\searrow&\\ \hline - \quad \rightarrow&60x^{2} & & e^{x} \\ &&\searrow&\\ \hline + \quad \rightarrow&120x & & e^{x} \\ &&\searrow&\\ \hline - \quad \rightarrow&120 & & e^{x} \\ &&\searrow&\\ \hline &0 & &e^{x} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int x^5 e^{x} d x\\ &=x^5e^{x}-5x^4e^{x}+20x^3e^{x}-60x^2e^{x}+120xe^{x}-120e^{x}\\ &= e^{x}(x^5 -5x^4 +20x^3 -60x^2 +120x -120 )+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.