Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 47

Answer

$$\frac{{{\pi ^2} - 4}}{8}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {{\theta ^2}} \sin 2\theta d\theta \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = {\theta ^2},\,\,\,\,du = 2\theta d\theta,\,\,\,\,\,dv = \sin 2\theta d\theta,\,\,\,\,v = - \frac{1}{2}\cos 2\theta \cr & \cr & {\text{Integration by parts then gives}} \cr & \int {{\theta ^2}\sin 2\theta } d\theta = - \frac{1}{2}{\theta ^2}\cos 2\theta - \int {\left( { - \frac{1}{2}\cos 2\theta } \right)} \left( {2\theta d\theta } \right) \cr & \int {{\theta ^2}\sin 2\theta } d\theta = - \frac{1}{2}{\theta ^2}\cos 2\theta + \int {\theta \cos 2\theta } d\theta \cr & \cr & {\text{Integrate by parts again}} \cr & \,\,\,\,\,{\text{Let }}u = \theta,\,\,\,\,du = d\theta,\,\,\,\,\,dv = \cos 2\theta d\theta,\,\,\,\,v = \frac{1}{2}\sin 2\theta \cr & \int {{\theta ^2}\sin 2\theta } d\theta = - \frac{1}{2}{\theta ^2}\cos 2\theta + \left( {\frac{1}{2}\theta \sin 2\theta - \int {\left( {\frac{1}{2}\sin 2\theta } \right)d\theta } } \right) \cr & \int {{\theta ^2}\sin 2\theta } d\theta = - \frac{1}{2}{\theta ^2}\cos 2\theta + \frac{1}{2}\theta \sin 2\theta - \frac{1}{2}\int {\sin 2\theta d\theta } \cr & \int {{\theta ^2}\sin 2\theta } d\theta = - \frac{1}{2}{\theta ^2}\cos 2\theta + \frac{1}{2}\theta \sin 2\theta + \frac{1}{4}\cos 2\theta + C \cr & {\text{Then}}{\text{,}} \cr & \int_0^{\pi /2} {{\theta ^2}} \sin 2\theta d\theta = \left( { - \frac{1}{2}{\theta ^2}\cos 2\theta + \frac{1}{2}\theta \sin 2\theta + \frac{1}{4}\cos 2\theta } \right)_0^{\pi /2} \cr & = \left( { - \frac{1}{2}{{\left( {\frac{\pi }{2}} \right)}^2}\cos 2\left( {\frac{\pi }{2}} \right) + \frac{1}{2}\left( {\frac{\pi }{2}} \right)\sin 2\left( {\frac{\pi }{2}} \right) + \frac{1}{2}\cos 2\left( {\frac{\pi }{2}} \right)} \right) - \left( {0 + 0 + \frac{1}{4}\cos 2\left( 0 \right)} \right) \cr & = - \frac{{{\pi ^2}}}{8}\left( { - 1} \right) + 0 + \frac{1}{4}\left( { - 1} \right) - \frac{1}{4} \cr & = \frac{{{\pi ^2}}}{8} - \frac{1}{2} \cr & = \frac{{{\pi ^2} - 4}}{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.