Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 37

Answer

$$\frac{1}{4}{e^{{x^4}}} + C $$

Work Step by Step

$$\eqalign{ & \int {{x^3}{e^{{x^4}}}} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = {x^4},\,\,\,\,du = 4{x^3}dx,\,\,\,\,dx = \frac{{du}}{{4{x^3}}} \cr & {\text{Then}}{\text{,}} \cr & \int {{x^3}{e^{{x^4}}}} dx = \int {{x^3}{e^u}} \left( {\frac{{du}}{{4{x^3}}}} \right) \cr & {\text{Cancel common factor }}x \cr & = \frac{1}{4}\int {{e^u}} du \cr & {\text{integrating}} \cr & = \frac{1}{4}{e^u} + C \cr & {\text{replacing }}u = {x^4} \cr & = \frac{1}{4}{e^{{x^4}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.