Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 12

Answer

$$\int \sin ^{-1} y dy=y\sin ^{-1} y+ (1-y^2)^{\frac{1}{2}} +C $$

Work Step by Step

Given $$\int \sin ^{-1} y dy $$ Using integration by parts, we get: $$ u=\sin ^{-1} y \Rightarrow du= \frac{1}{\sqrt{1-y^2}}dy $$ $$ dv= dy \Rightarrow v=y $$ So, we get \begin{aligned} I&=\int \sin ^{-1} y dy\\ &=uv- \int vdu\\ &=y\sin ^{-1} y- \int \frac{y}{\sqrt{1-y^2}}dy\\ &=y\sin ^{-1} y- \frac{1}{2}\int 2y(1-y^2)^{-\frac{1}{2}}dy\\ &=y\sin ^{-1} y+ (1-y^2)^{\frac{1}{2}} +C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.