Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 49

Answer

$$\frac{{5\pi - 3\sqrt 3 }}{9}$$

Work Step by Step

$$\eqalign{ & \int_{2/\sqrt 3 }^2 {t{{\sec }^{ - 1}}t} dt \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = {\sec ^{ - 1}}t,\,\,\,\,du = \frac{1}{{t\sqrt {{t^2} - 1} }}dt,\,\,\,\,\,dv = tdt,\,\,\,\,\,v = \frac{1}{2}{t^2} \cr & \cr & {\text{Integration by parts then gives}} \cr & \int {t{{\sec }^{ - 1}}t} dt = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \int {\left( {\frac{1}{2}{t^2}} \right)} \left( {\frac{1}{{t\sqrt {{t^2} - 1} }}dt} \right) \cr & \int {t{{\sec }^{ - 1}}t} dt = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \frac{1}{4}\int {\frac{{2t}}{{\sqrt {{t^2} - 1} }}dt} \cr & = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \frac{1}{4}\int {{{\left( {{t^2} - 1} \right)}^{ - 1/2}}\left( {2t} \right)dt} \cr & = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \frac{1}{4}\int {{{\left( {{t^2} - 1} \right)}^{ - 1/2}}\left( {2t} \right)dt} \cr & = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \frac{1}{4}\left( {\frac{{{{\left( {{t^2} - 1} \right)}^{1/2}}}}{{1/2}}} \right) + C \cr & = \frac{1}{2}{t^2}{\sec ^{ - 1}}t - \frac{1}{2}\sqrt {{t^2} - 1} + C \cr & {\text{Then}}{\text{,}} \cr & \int_{2/\sqrt 3 }^2 {t{{\sec }^{ - 1}}t} dt = \left( {\frac{1}{2}{t^2}{{\sec }^{ - 1}}t - \frac{1}{2}\sqrt {{t^2} - 1} } \right)_{2/\sqrt 3 }^2 \cr & = \left( {\frac{1}{2}{{\left( 2 \right)}^2}{{\sec }^{ - 1}}\left( 2 \right) - \frac{1}{2}\sqrt {{2^2} - 1} } \right) - \left( {\frac{1}{2}{{\left( {\frac{2}{{\sqrt 3 }}} \right)}^2}{{\sec }^{ - 1}}\left( {\frac{2}{{\sqrt 3 }}} \right) - \frac{1}{2}\sqrt {{{\left( {\frac{2}{{\sqrt 3 }}} \right)}^2} - 1} } \right) \cr & = \left( {\frac{2}{3}\pi - \frac{{\sqrt 3 }}{2}} \right) - \left( {\frac{1}{9}\pi - \frac{{\sqrt 3 }}{6}} \right) \cr & = \frac{2}{3}\pi - \frac{{\sqrt 3 }}{2} - \frac{1}{9}\pi + \frac{{\sqrt 3 }}{6} \cr & = \frac{5}{9}\pi - \frac{{\sqrt 3 }}{3} \cr & = \frac{{5\pi - 3\sqrt 3 }}{9} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.