Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 32

Answer

$$2\sin \sqrt x + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cos \sqrt x }}{{\sqrt x }}} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = \sqrt x,\,\,\,\,du = \frac{1}{{2\sqrt x }}dx,\,\,\,\,dx = 2\sqrt x du \cr & {\text{Then}}{\text{,}} \cr & \int {\frac{{\cos \sqrt x }}{{\sqrt x }}} dx = \int {\frac{{\cos u}}{{\sqrt x }}} \left( {2\sqrt x du} \right) \cr & {\text{Cancel common factor }}\sqrt x \cr & = \int {\frac{{\cos u}}{{}}} \left( {2du} \right) \cr & = 2\int {\cos u} du \cr & {\text{integrating}} \cr & = 2\sin u + C \cr & {\text{replacing }}u = \sqrt x \cr & = 2\sin \sqrt x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.