Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 25

Answer

$$\frac{2}{3}\left( {\sqrt {3s + 9} {e^{\sqrt {3s + 9} }} - {e^{\sqrt {3s + 9} }}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{e^{\sqrt {3s + 9} }}} ds \cr & {\text{use }}t = \sqrt {3s + 9},\,\,\,\,dt = \frac{3}{{2\sqrt {3s + 9} }}ds,\,\,\,\,ds = \frac{{2\sqrt {3s + 9} }}{3}dt \cr & \int {{e^{\sqrt {3s + 9} }}} ds = \int {{e^{\sqrt t }}} \left( {\frac{{2\sqrt {3s + 9} }}{3}} \right)dt \cr & = \frac{2}{3}\int {t{e^t}} dt \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = t,\,\,\,\,du = dt,\,\,\,\,\,dv = {e^t}dt,\,\,\,\,v = {e^t} \cr & \cr & {\text{Integration by parts then gives}} \cr & \frac{2}{3}\int {t{e^t}} dt = \frac{2}{3}\left( {t{e^t} - \int {{e^t}} dt} \right) \cr & \frac{2}{3}\int {t{e^t}} dt = \frac{2}{3}t{e^t} - \frac{2}{3}\int {{e^t}} dt \cr & \frac{2}{3}\int {t{e^t}} dt = \frac{2}{3}t{e^t} - \frac{2}{3}{e^t} + C \cr & \cr & {\text{To write in terms of }}s{\text{, substitute }}\sqrt {3s + 9} {\text{ for }}t \cr & = \frac{2}{3}\sqrt {3s + 9} {e^{\sqrt {3s + 9} }} - \frac{2}{3}{e^{\sqrt {3s + 9} }} + C \cr & = \frac{2}{3}\left( {\sqrt {3s + 9} {e^{\sqrt {3s + 9} }} - {e^{\sqrt {3s + 9} }}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.