Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 36

Answer

$$\frac{{{{\ln }^4}x}}{4} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\left( {\ln x} \right)}^3}}}{x}} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = \ln x,\,\,\,\,du = \frac{1}{x}dx,\,\,\,\,dx = xdu \cr & {\text{Then}}{\text{,}} \cr & \int {\frac{{{{\left( {\ln x} \right)}^3}}}{x}} dx = \int {\frac{{{u^3}}}{x}} xdu \cr & {\text{Cancel common factor }}x \cr & = \int {{u^3}} du \cr & {\text{integrating}} \cr & = \frac{{{u^4}}}{4} + C \cr & {\text{replacing }}u = \ln x \cr & = \frac{{{{\ln }^4}x}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.