Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 27

Answer

$$\frac{{\pi \sqrt 3 }}{3} - \ln \left( 2 \right) - \frac{{{\pi ^2}}}{{18}}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /3} {x{{\tan }^2}x} dx \cr & = \int_0^{\pi /3} {x\left( {{{\sec }^2}x - 1} \right)} dx \cr & \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = x,\,\,\,\,du = dx,\,\,\,\,\,dv = \left( {{{\sec }^2}x - 1} \right)dx,\,\,\,\,v = \tan x - x \cr & \cr & {\text{Integration by parts then gives}} \cr & = x\left( {\tan x - x} \right) - \int {\left( {\tan x - x} \right)dx} \cr & = x\left( {\tan x - x} \right) - \int {\tan xdx} + \int {xdx} \cr & = x\tan x - {x^2} + \ln \left| {\cos x} \right| + \frac{{{x^2}}}{2} + C \cr & = x\tan x + \ln \left| {\cos x} \right| - \frac{{{x^2}}}{2} + C \cr & {\text{then}}{\text{,}} \cr & \int_0^{\pi /3} {x{{\tan }^2}x} dx = \left( {x\tan x + \ln \left| {\cos x} \right| - \frac{{{x^2}}}{2}} \right)_0^{\pi /3} \cr & = \left( {\frac{\pi }{3}\tan \frac{\pi }{3} + \ln \left| {\cos \frac{\pi }{3}} \right| - \frac{1}{2}{{\left( {\frac{\pi }{3}} \right)}^2}} \right) - \left( 0 \right) \cr & = \frac{{\pi \sqrt 3 }}{3} + \ln \left( {\frac{1}{2}} \right) - \frac{{{\pi ^2}}}{{18}} \cr & = \frac{{\pi \sqrt 3 }}{3} - \ln \left( 2 \right) - \frac{{{\pi ^2}}}{{18}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.