Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 72

Answer

$\frac{{dy}}{{dx}} = \frac{1}{2(1 + {x^2})}$

Work Step by Step

$$\eqalign{ & y = {\tan ^{ - 1}}\left( {x - \sqrt {1 + {x^2}} } \right) \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\left( {x - \sqrt {1 + {x^2}} } \right)} \right] \cr & {\text{Use }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}},{\text{ let }}u = x - \sqrt {1 + {x^2}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{1 + {{\left( {x - \sqrt {1 + {x^2}} } \right)}^2}}}\frac{d}{{dx}}\left[ {x - \sqrt {1 + {x^2}} } \right] \cr & {\text{Computing the derivative}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{1 + {{\left( {x - \sqrt {1 + {x^2}} } \right)}^2}}}\left( {1 - \frac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) \cr & {\text{Simplify}} \cr &= \frac{1}{{1 + {{\left( {x - \sqrt {1 + {x^2}} } \right)}^2}}}\left( {1 - \frac{x}{{\sqrt {1 + {x^2}} }}} \right) \cr &= \frac{1}{{1 + {{\left( {x - \sqrt {1 + {x^2}} } \right)}^2}}}\left( {\frac{{\sqrt {1 + {x^2}} - x}}{{\sqrt {1 + {x^2}} }}} \right) \cr &= \frac{{\sqrt {1 + {x^2}} - x}}{{\sqrt {1 + {x^2}} \left[ {1 + x^2-2x\sqrt{1+x^2}+1+x^2 }\right] }} \cr &= \frac{{\sqrt {1 + {x^2}} - x}}{{2\sqrt {1 + {x^2}} ({1 + x^2-x\sqrt{1+x^2}} })} \cr &= \frac{{\sqrt {1 + {x^2}} - x}}{{2(1 + {x^2}) (\sqrt{1 + x^2}-x} } \cr &= \frac{{1}}{{2(1 + {x^2)}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.