Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 59

Answer

$f^{n}(x)= \frac{(-1)^{n-1}(n-1)!}{(x-1)^{n}}$

Work Step by Step

Differentiate $f(x)=ln(x-1)$ with respect to $x$. $f'(x)=\frac{1}{(x-1)}$ $f''(x)=(-1)(x-1)^{-2}$ $f'''(x)=(-1)^{2}1.2(x-1)^{-3}$ After solving in the same manner, we find that $f^{n}(x)=(-1)^{n-1}1.2.3....(n-1)(x-1)^{-n}$ Hence,$f^{n}(x)= \frac{(-1)^{n-1}(n-1)!}{(x-1)^{n}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.