Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 70

Answer

$g'\left( t \right) = \frac{{4{t^3}}}{{\left( {1 + {t^8}} \right)\arctan \left( {{t^4}} \right)}}$

Work Step by Step

$$\eqalign{ & g\left( t \right) = \ln \left( {\arctan \left( {{t^4}} \right)} \right) \cr & {\text{Differentiate}}{\text{, apply }}\frac{d}{{dt}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dt}} \cr & g'\left( t \right) = \frac{d}{{dt}}\left[ {\ln \left( {\arctan \left( {{t^4}} \right)} \right)} \right] \cr & g'\left( t \right) = \frac{1}{{\arctan \left( {{t^4}} \right)}}\frac{d}{{dt}}\left[ {\left( {\arctan \left( {{t^4}} \right)} \right)} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }} \cr & g'\left( t \right) = \frac{1}{{\arctan \left( {{t^4}} \right)}}\left( {\frac{1}{{1 + {{\left( {{t^4}} \right)}^2}}}} \right)\frac{d}{{dt}}\left[ {{t^4}} \right] \cr & {\text{Compute derivative}} \cr & g'\left( t \right) = \frac{1}{{\arctan \left( {{t^4}} \right)}}\left( {\frac{1}{{1 + {t^8}}}} \right)\left( {4{t^3}} \right) \cr & {\text{Simplify}} \cr & g'\left( t \right) = \frac{{4{t^3}}}{{\left( {1 + {t^8}} \right)\arctan \left( {{t^4}} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.