Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 27

Answer

See proof

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\ln \left( {x + \sqrt {{x^2} + 1} } \right) = \frac{1}{{\sqrt {{x^2} + 1} }} \cr & {\text{Differentiating the left side}}{\text{, use }}\frac{d}{{dx}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dx}} \cr & \frac{d}{{dx}}\ln \left( {x + \sqrt {{x^2}} + 1} \right) = \frac{1}{{x + \sqrt {{x^2} + 1} }}\frac{d}{{dx}}\left[ {x + \sqrt {{x^2} + 1} } \right] \cr & {\text{Computing the derivatives}} \cr & = \frac{1}{{x + \sqrt {{x^2} + 1} }}\left( {1 + \frac{{2x}}{{2\sqrt {{x^2} + 1} }}} \right) \cr & = \frac{1}{{x + \sqrt {{x^2} + 1} }}\left( {1 + \frac{x}{{\sqrt {{x^2} + 1} }}} \right) \cr & {\text{Simplifying}} \cr & = \frac{1}{{x + \sqrt {{x^2} + 1} }}\left( {\frac{{\sqrt {{x^2} + 1} + x}}{{\sqrt {{x^2} + 1} }}} \right) \cr & = \frac{1}{{\sqrt {{x^2} + 1} }} \cr & {\text{Therefore}}{\text{, the statement has been verified.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.