Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 71

Answer

$f'\left( z \right) = \frac{{2z{e^{\arcsin \left( {{z^2}} \right)}}}}{{\sqrt {1 - {z^4}} }}$

Work Step by Step

$$\eqalign{ & f\left( z \right) = {e^{\arcsin \left( {{z^2}} \right)}} \cr & {\text{Differentiate}}{\text{, apply }}\frac{d}{{dz}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dz}} \cr & f'\left( z \right) = \frac{d}{{dz}}\left[ {{e^{\arcsin \left( {{z^2}} \right)}}} \right] \cr & f'\left( z \right) = {e^{\arcsin \left( {{z^2}} \right)}}\frac{d}{{dz}}\left[ {\arcsin \left( {{z^2}} \right)} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }} \cr & f'\left( z \right) = {e^{\arcsin \left( {{z^2}} \right)}}\left( {\frac{1}{{\sqrt {1 - \left( {{z^2}} \right)} }}} \right)\frac{d}{{dz}}\left[ {{z^2}} \right] \cr & f'\left( z \right) = {e^{\arcsin \left( {{z^2}} \right)}}\left( {\frac{1}{{\sqrt {1 - \left( {{z^2}} \right)} }}} \right)\left( {2z} \right) \cr & {\text{Simplify}} \cr & f'\left( z \right) = \frac{{2z{e^{\arcsin \left( {{z^2}} \right)}}}}{{\sqrt {1 - {z^4}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.