Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 22

Answer

$g'\left( x \right) = \left( {x + 2x\ln x} \right){x^{{x^2}}}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = {e^{{x^2}\ln x}} \cr & {\text{Differentiate}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{{x^2}\ln x}}} \right] \cr & {\text{Use the formula }}\frac{d}{{dx}}\left[ {{e^x}} \right]{\text{ and the chain rule}}{\text{, then}} \cr & \frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}},{\text{ let }}u = {x^2}\ln x \cr & g'\left( x \right) = {e^{{x^2}\ln x}}\underbrace {\frac{d}{{dx}}\left[ {{x^2}\ln x} \right]}_{{\text{use product rule}}} \cr & g'\left( x \right) = {e^{{x^2}\ln x}}\left( {{x^2}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{x^2}} \right]} \right) \cr & {\text{Computing derivatives}} \cr & g'\left( x \right) = {e^{{x^2}\ln x}}\left( {{x^2}\left( {\frac{1}{x}} \right) + \ln x\left( {2x} \right)} \right) \cr & g'\left( x \right) = \left( {x + 2x\ln x} \right){e^{{x^2}\ln x}} \cr & g'\left( x \right) = \left( {x + 2x\ln x} \right){(e^{\ln x})^{x^2}} \cr & g'\left( x \right) = \left( {x + 2x\ln x} \right)x^{x^2} \cr}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.