Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 64

Answer

$f'\left( x \right) = \frac{1}{{\sqrt {{e^{2x}} - 1} }}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\sec ^{ - 1}}\left( {{e^x}} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}\left( {{e^x}} \right)} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }}\left( {p223} \right) \cr & {\text{and the chain rule}}{\text{. }}\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}u} \right] = \frac{1}{{u\sqrt {{u^2} - 1} }}\frac{{du}}{{dx}},\;u = {e^x} \cr & f'\left( x \right) = \frac{1}{{{e^x}\sqrt {{{\left( {{e^x}} \right)}^2} - 1} }}\frac{d}{{dx}}\left[ {{e^x}} \right] \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( x \right) = \frac{1}{{{e^x}\sqrt {{e^{2x}} - 1} }}\left( {{e^x}} \right) \cr & f'\left( x \right) = \frac{1}{{\sqrt {{e^{2x}} - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.