Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 63

Answer

$f'\left( x \right) = \frac{5}{{\sqrt {1 - 25{x^2}} }}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\sin ^{ - 1}}\left( {5x} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}\left( {5x} \right)} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }}\left( {p223} \right) \cr & {\text{and the chain rule}}{\text{. }}\frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}},\;u = 5x \cr & f'\left( x \right) = \frac{1}{{\sqrt {1 - {{\left( {5x} \right)}^2}} }}\frac{d}{{dx}}\left[ {5x} \right] \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( x \right) = \frac{1}{{\sqrt {1 - 25{x^2}} }}\left( 5 \right) \cr & f'\left( x \right) = \frac{5}{{\sqrt {1 - 25{x^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.