Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 67

Answer

$y' = \frac{{2\left( {{{\tan }^{ - 1}}x} \right)}}{{1 + {x^2}}}$

Work Step by Step

$$\eqalign{ & y = {\left( {{{\tan }^{ - 1}}x} \right)^2} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\left( {{{\tan }^{ - 1}}x} \right)}^2}} \right] \cr & {\text{Use the general power rule for derivatives}} \cr & y' = 2\left( {{{\tan }^{ - 1}}x} \right)\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}x} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }} \cr & y' = 2\left( {{{\tan }^{ - 1}}x} \right)\left( {\frac{1}{{1 + {x^2}}}} \right) \cr & {\text{Simplify}} \cr & y' = \frac{{2\left( {{{\tan }^{ - 1}}x} \right)}}{{1 + {x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.