Answer
$$f'(x)=\ln(x)$$
Work Step by Step
$f(x)=x\ln(x)-x$
We should use the product rule that says:
For $f(x)=u(x)v(x)-->f'(x)=u'(x)v(x)+u(x)v'(x)$
$f'(x)=[\frac{d}{dx}(x)]*[\ln(x)]+[x]*[\frac{d}{dx}\ln(x)]-1$
$f'(x)=[(1)(\ln(x))+(x)(\frac{1}{x})]-1$
$f'(x)=\ln(x)+1-1$
$$f'(x)=\ln(x)$$