Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 28

Answer

See proof

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left[ {\ln \sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \csc x \cr & {\text{Rewrite the left side using radical properties}} \cr & \frac{d}{{dx}}\left[ {\ln {{\left( {\frac{{1 - \cos x}}{{1 + \cos x}}} \right)}^{1/2}}} \right] \cr & {\text{Use the logarithmic property }}\ln {u^n} = n\ln u \cr & \frac{d}{{dx}}\left[ {\frac{1}{2}\ln \left( {\frac{{1 - \cos x}}{{1 + \cos x}}} \right)} \right] \cr & {\text{Differentiating the left side}}{\text{, use }}\frac{d}{{dx}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dx}} \cr & \frac{d}{{dx}}\left[ {\frac{1}{2}\ln \left( {\frac{{1 - \cos x}}{{1 + \cos x}}} \right)} \right] = \frac{1}{2}\left( {\frac{{1 + \cos x}}{{1 - \cos x}}} \right)\frac{d}{{dx}}\left[ {\frac{{1 - \cos x}}{{1 + \cos x}}} \right] \cr & {\text{Using the quotient rule}} \cr & = \frac{1}{2}\left( {\frac{{1 + \cos x}}{{1 - \cos x}}} \right)\left( {\frac{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)' - \left( {1 - \cos x} \right)\left( {1 + \cos x} \right)'}}{{{{\left( {1 + \cos x} \right)}^2}}}} \right) \cr & {\text{Computing the derivatives}} \cr & = \frac{1}{2}\left( {\frac{1}{{1 - \cos x}}} \right)\left( {\frac{{\left( {1 + \cos x} \right)\left( {\sin x} \right) - \left( {1 - \cos x} \right)\left( { - \sin x} \right)}}{{1 + \cos x}}} \right) \cr & {\text{Simplifying}} \cr & = \frac{1}{2}\left( {\frac{1}{{1 - \cos x}}} \right)\left( {\frac{{\sin x + \sin x\cos x + \sin x - \sin x\cos x}}{{1 + \cos x}}} \right) \cr & = \frac{1}{2}\left( {\frac{1}{{1 - \cos x}}} \right)\left( {\frac{{2\sin x}}{{1 + \cos x}}} \right) \cr & = \frac{{\sin x}}{{1 - {{\cos }^2}x}} \cr & {\text{Use the identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \frac{{\sin x}}{{{{\sin }^2}x}} \cr & = \frac{1}{{\sin x}} \cr & = \csc x \cr & {\text{Therefore}}{\text{, the statement has been verified.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.