Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 3

Answer

$f'\left( x \right) = \frac{{2x + 3}}{{{x^2} + 3x + 5}}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \ln \left( {{x^2} + 3x + 5} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\ln \left( {{x^2} + 3x + 5} \right)} \right] \cr & {\text{Use the formula }}\frac{d}{{dx}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dx}},{\text{ }} {\text{ }} \cr & {\text{Let }}u = {x^2} + 3x + 5,{\text{ then}} \cr & f'\left( x \right) = \frac{1}{{{x^2} + 3x + 5}}\frac{d}{{dx}}\left[ {{x^2} + 3x + 5} \right] \cr & f'\left( x \right) = \frac{1}{{{x^2} + 3x + 5}}\left( {2x + 3} \right) \cr & {\text{simplify}} \cr & f'\left( x \right) = \frac{{2x + 3}}{{{x^2} + 3x + 5}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.