Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 68

Answer

$g'\left( x \right) = - \frac{1}{{2\sqrt x \sqrt {1 - x} }}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \arccos \sqrt x \cr & {\text{Differentiate}} \cr & g'\left( x \right) = \arccos \sqrt x \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }} \cr & {\text{and the chain rule}}{\text{. }}\frac{d}{{dx}}\left[ {{{\cos }^{ - 1}}u} \right] = - \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}},\;{\text{ }}u = \sqrt x \cr & {\text{Simplify}} \cr & g'\left( x \right) = - \frac{1}{{\sqrt {1 - {{\left( {\sqrt x } \right)}^2}} }}\frac{d}{{dx}}\left[ {\sqrt x } \right] \cr & g'\left( x \right) = - \frac{1}{{\sqrt {1 - x} }}\left( {\frac{1}{{2\sqrt x }}} \right) \cr & g'\left( x \right) = - \frac{1}{{2\sqrt x \sqrt {1 - x} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.