Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 73

Answer

$h'\left( t \right) = 0$

Work Step by Step

$$\eqalign{ & h\left( t \right) = {\cot ^{ - 1}}t + {\cot ^{ - 1}}\left( {\frac{1}{t}} \right) \cr & {\text{Differentiate}} \cr & h'\left( t \right) = \frac{d}{{dt}}\left[ {{{\cot }^{ - 1}}t} \right] + \frac{d}{{dt}}\left[ {{{\cot }^{ - 1}}\left( {\frac{1}{t}} \right)} \right] \cr & {\text{Apply }}\frac{d}{{dt}}\left[ {{{\cot }^{ - 1}}u} \right] = - \frac{1}{{1 + {u^2}}}\frac{{du}}{{dt}},{\text{ then}} \cr & h'\left( t \right) = - \frac{1}{{1 + {t^2}}}\frac{d}{{dt}}\left[ t \right] - \frac{1}{{1 + {{\left( {1/t} \right)}^2}}}\frac{d}{{dt}}\left[ {\frac{1}{t}} \right] \cr & h'\left( t \right) = - \frac{1}{{1 + {t^2}}}\left( 1 \right) - \frac{1}{{1 + {{\left( {1/t} \right)}^2}}}\left( { - \frac{1}{{{t^2}}}} \right) \cr & {\text{Simplify}} \cr & h'\left( t \right) = - \frac{1}{{1 + {t^2}}} + \frac{{{t^2}}}{{{t^2} + 1}}\left( {\frac{1}{{{t^2}}}} \right) \cr & h'\left( t \right) = - \frac{1}{{1 + {t^2}}} + \frac{1}{{{t^2} + 1}} \cr & h'\left( t \right) = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.