Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 56

Answer

$y'=(lnx)^{cosx}[\frac{cosx}{x.lnx}-sinx ln(lnx)]$

Work Step by Step

Given: $y =(lnx)^{cosx}$ Taking logarithmic on both sides of the function $y =(lnx)^{cosx}$ $lny=cosx ln(lnx)$ Take implicit differentiation with respect to $x$. Apply product rule of differentiation. $\frac{d}{dx}(lny)=\frac{d}{dx}[cosx ln(lnx)]$ $\frac{1}{y}\frac{d}{dx}(y)=cosx\frac{d}{dx}[ln(lnx)]+ln(lnx)\frac{d}{dx}(cosx)$ $\frac{d}{dx}(y)=y[\frac{1}{x}\frac{cosx}{lnx}]+ln(lnx)(-sinx)]$ Hence, $y'=(lnx)^{cosx}[\frac{cosx}{x.lnx}-sinx ln(lnx)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.