Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 65

Answer

$y' = \frac{1}{{2x\sqrt {x - 1} }}$

Work Step by Step

$$\eqalign{ & y = {\tan ^{ - 1}}\sqrt {x - 1} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {x - 1} } \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }}\left( {p223} \right) \cr & {\text{and the chain rule}}{\text{. }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{{u^2} + 1}}\frac{{du}}{{dx}},\;{\text{ }}u = \sqrt {x - 1} \cr & y' = \frac{1}{{1 + {{\left( {\sqrt {x - 1} } \right)}^2}}}\frac{d}{{dx}}\left[ {\sqrt {x - 1} } \right] \cr & {\text{Therefore}}{\text{,}} \cr & y' = \frac{1}{{1 + \left( {x - 1} \right)}}\left( {\frac{1}{{2\sqrt {x - 1} }}} \right) \cr & y' = \frac{1}{{2x\sqrt {x - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.