Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 66

Answer

$y' = \frac{{2x}}{{1 + {x^4}}}$

Work Step by Step

$$\eqalign{ & y = {\tan ^{ - 1}}\left( {{x^2}} \right) \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\left( {{x^2}} \right)} \right] \cr & {\text{Use the Derivatives of Inverse Trigonometric Functions }} \cr & {\text{and the chain rule}}{\text{. }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{{u^2} + 1}}\frac{{du}}{{dx}},\;{\text{ }}u = {x^2} \cr & y' = \frac{1}{{1 + {{\left( {{x^2}} \right)}^2}}}\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Therefore}}{\text{,}} \cr & y' = \frac{1}{{1 + {x^4}}}\left( {2x} \right) \cr & {\text{Simplify}} \cr & y' = \frac{{2x}}{{1 + {x^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.