Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 21

Answer

$y^{\prime}=-\frac{x}{1+x}$

Work Step by Step

$y=\ln \left(e^{-x}+x e^{-x}\right)\\ y^{\prime}=\frac{1}{e^{-x}+x e^{-x}} \times\left(-\frac{1}{e^{x}}+(x)\left(-e^{-x}\right)+\left(e^{-x}\right)(1))\right.\\ y^{\prime}=\frac{1}{e^{-x}+x e^{-x}} \times\left(\frac{-1-x+1}{e^{x}}\right)\\ y^{\prime}=-\frac{x}{1+x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.