Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 69

Answer

$h'\left( x \right) = \frac{{\arcsin x}}{x} + \frac{{\ln x}}{{\sqrt {1 - {x^2}} }}$

Work Step by Step

$$\eqalign{ & h\left( x \right) = \left( {\arcsin x} \right)\ln x \cr & {\text{Differentiate}} \cr & h'\left( x \right) = \frac{d}{{dx}}\left[ {\left( {\arcsin x} \right)\ln x} \right] \cr & {\text{Apply the product rule }} \cr & h'\left( x \right) = \left( {\arcsin x} \right)\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {\left( {\arcsin x} \right)} \right] \cr & {\text{Compute derivatives}} \cr & h'\left( x \right) = \left( {\arcsin x} \right)\left( {\frac{1}{x}} \right) + \ln x\left( {\frac{1}{{\sqrt {1 - {x^2}} }}} \right) \cr & {\text{Simplify}} \cr & h'\left( x \right) = \frac{{\arcsin x}}{x} + \frac{{\ln x}}{{\sqrt {1 - {x^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.