Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 19

Answer

$y' = - \frac{{10{x^4}}}{{ {3 - 2{x^5}} }}$

Work Step by Step

$$\eqalign{ & y = \ln \left| {3 - 2{x^5}} \right| \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {\ln \left| {3 - 2{x^5}} \right|} \right] \cr & {\text{Use the formula }}\frac{d}{{dt}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dt}},{\text{ }}\left( {{\text{see page 218}}} \right),{\text{ }} \cr & y' = \frac{1}{{\left| {3 - 2{x^5}} \right|}}\frac{d}{{dx}}\left[ {|3 - 2{x^5}|} \right] \cr & y' = \frac{1}{{\left| {3 - 2{x^5}} \right|}}\cdot \frac{3-2x^5}{{\left| {3 - 2{x^5}} \right|}}\left( { - 10{x^4}} \right) \cr & {\text{Simplify}} \cr & y' = - \frac{{10{x^4}}}{{ {3 - 2{x^5}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.