Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 2

Answer

$g'\left( t \right) = \frac{{2t}}{{3 + {t^2}}}$

Work Step by Step

$$\eqalign{ & g\left( t \right) = \ln \left( {3 + {t^2}} \right) \cr & {\text{Differentiate}} \cr & g'\left( t \right) = \frac{d}{{dt}}\left[ {\ln \left( {3 + {t^2}} \right)} \right] \cr & {\text{Use the formula }}\frac{d}{{dt}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dt}},{\text{ }}{\text{ }} \cr & {\text{Let }}u = 3 + {t^2},{\text{ then}} \cr & g'\left( t \right) = \frac{1}{{3 + {t^2}}}\frac{d}{{dt}}\left[ {3 + {t^2}} \right] \cr & g'\left( t \right) = \frac{1}{{3 + {t^2}}}\left( {2t} \right) \cr & {\text{simplify}} \cr & g'\left( t \right) = \frac{{2t}}{{3 + {t^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.