Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 23

Answer

$h'\left( x \right) = (2x^2 + 1)e^{x^2}$

Work Step by Step

$$\eqalign{ & h\left( x \right) = {e^{{x^2} + \ln x}} \cr & {\text{Differentiate}} \cr & h'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{{x^2} + \ln x}}} \right] \cr & {\text{Use the formula }}\frac{d}{{dx}}\left[ {{e^x}} \right]{\text{ and the chain rule}}{\text{, then}} \cr & \frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}},{\text{ let }}u = {x^2} + \ln x \cr & h'\left( x \right) = {e^{{x^2} + \ln x}}\frac{d}{{dx}}\left[ {{x^2} + \ln x} \right] \cr & {\text{Computing derivatives}} \cr & h'\left( x \right) = {e^{{x^2} + \ln x}}\left( {2x + \frac{1}{x}} \right) \cr & {\text{Simplify}} \cr & h'\left( x \right) = {e^{{x^2} + \ln x}}\left( {\frac{{2{x^2} + 1}}{x}} \right) \cr & h'\left( x \right) = \left( {\frac{{2{x^2} + 1}}{x}} \right){e^{{x^2} + \ln x}} \cr & h'\left( x \right) = \left( {\frac{{2{x^2} + 1}}{x}} \right){e^{{x^2}}\cdot e^{\ln x}} \cr & h'\left( x \right) = \left( {\frac{{2{x^2} + 1}}{x}} \right){e^{{x^2}}\cdot x} \cr & h'\left( x \right) = (2x^2 + 1)e^{x^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.