Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 58

Answer

$y'=\frac{lny-\frac{y}{x}}{lnx-\frac{x}{y}}$ or $y'=\frac{y(xlny-y)}{x(ylnx-x)}$

Work Step by Step

Given: $x^{y}=y^{x}$ Use logarithmic properties $ln(x^{y})=ylnx$. $ylnx=xlny$ Simplify the given function using both product rule and chain rule of differentiation. $\frac{y}{x}+lnx\frac{dy}{dx}=\frac{x}{y}\frac{dy}{dx}+lny$ or $\frac{y}{x}+lnxy'=\frac{x}{y}y'+lny$ Hence, $y'=\frac{lny-\frac{y}{x}}{lnx-\frac{x}{y}}$ or $y'=\frac{y(xlny-y)}{x(ylnx-x)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.