Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 25

Answer

$y' = \frac{a}{x} - \ln b$

Work Step by Step

$$\eqalign{ & y = \ln \frac{{{x^a}}}{{{b^x}}} \cr & {\text{Use the logarithmic property }}\ln \left( {\frac{a}{b}} \right) = \ln a - \ln b \cr & y = \ln {x^a} - \ln {b^x} \cr & {\text{Use the logarithmic property }}\ln {u^n} = n\ln u \cr & y = a\ln x - x\ln b \cr & {\text{Differentiate both sides}} \cr & y' = \frac{d}{{dx}}\left[ {a\ln x} \right] - \frac{d}{{dx}}\left[ {x\ln b} \right] \cr & {\text{Pull out the constants}} \cr & y' = a\frac{d}{{dx}}\left[ {\ln x} \right] - \ln b\frac{d}{{dx}}\left[ x \right] \cr & {\text{Compute derivatives}} \cr & y' = a\left( {\frac{1}{x}} \right) - \ln b\left( 1 \right) \cr & y' = \frac{a}{x} - \ln b \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.