Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 12

Answer

$p'\left( t \right) = \frac{t}{{{t^2} + 1}}$

Work Step by Step

$$\eqalign{ & p\left( t \right) = \ln \sqrt {{t^2} + 1} \cr & {\text{Rewrite the function}}{\text{, recall that }}\sqrt m = {m^{1/2}} \cr & p\left( t \right) = \ln {\left( {{t^2} + 1} \right)^{1/2}} \cr & {\text{Using logarithmic properties}} \cr & p\left( t \right) = \frac{1}{2}\ln \left( {{t^2} + 1} \right) \cr & {\text{Differentiate}} \cr & p'\left( t \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}\ln \left( {{t^2} + 1} \right)} \right] \cr & p'\left( t \right) = \frac{1}{2}\frac{d}{{dx}}\left[ {\ln \left( {{t^2} + 1} \right)} \right] \cr & {\text{Use the formula }}\frac{d}{{dt}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dt}},{\text{ }}{\text{ }} \cr & {\text{Let }}u = {t^2} + 1,{\text{ then}} \cr & p'\left( t \right) = \frac{1}{2}\left( {\frac{1}{{{t^2} + 1}}} \right)\frac{d}{{dt}}\left[ {{t^2} + 1} \right] \cr & p'\left( t \right) = \frac{1}{2}\left( {\frac{1}{{{t^2} + 1}}} \right)\left( {2t} \right) \cr & {\text{simplify}} \cr & p'\left( t \right) = \frac{t}{{{t^2} + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.