Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 224: 13

Answer

$y' = \frac{{2x + 3}}{{\left( {{x^2} + 3x} \right)\left( {\ln 8} \right)}}$

Work Step by Step

$$\eqalign{ & y = {\log _8}\left( {{x^2} + 3x} \right) \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\log }_8}\left( {{x^2} + 3x} \right)} \right] \cr & {\text{Use the formula }}\frac{d}{{dx}}\left( {{{\log }_b}x} \right) = \frac{1}{{x\ln b}}{\text{ and the chain rule}} \cr & y' = \frac{1}{{\left( {{x^2} + 3x} \right)\left( {\ln 8} \right)}}\frac{d}{{dx}}\left[ {{x^2} + 3x} \right] \cr & {\text{compute the derivative and simplify}} \cr & y' = \frac{1}{{\left( {{x^2} + 3x} \right)\left( {\ln 8} \right)}}\left( {2x + 3} \right) \cr & y' = \frac{{2x + 3}}{{\left( {{x^2} + 3x} \right)\left( {\ln 8} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.