Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 9

Answer

$$\frac{{dy}}{{dt}} = - {8^{ - t}}\left( {\ln 8} \right)$$

Work Step by Step

$$\eqalign{ & y = {8^{ - t}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{8^{ - t}}} \right] \cr & {\text{Use the general power rule for differentiation }}\cr &\frac{d}{{dt}}\left[ {{a^u}} \right] = {a^u}\left( {\ln a} \right)\frac{{du}}{{dt}}{\text{ }} \cr & {\text{for this exercise, let }}a = 8{\text{ and }}u = - t{\text{}}{\text{,}} \cr & \frac{{dy}}{{dt}} = {8^{ - t}}\left( {\ln 8} \right)\frac{d}{{dt}}\left[ { - t} \right] \cr & {\text{solve the derivative}} \cr & \frac{{dy}}{{dt}} = {8^{ - t}}\left( {\ln 8} \right)\left( { - 1} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{dt}} = - {8^{ - t}}\left( {\ln 8} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.