Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 56

Answer

$$\frac{3}{8}$$

Work Step by Step

$$\eqalign{ & \int_{ - \ln 2}^0 {{e^{2w}}} dw \cr & {\text{use substitution}}{\text{: }} \cr & {\text{ }}u = 2w,{\text{ so that }}\frac{{du}}{{dw}} = 2,\,\,\,dw = \frac{{du}}{2} \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}w = 0,{\text{ }}u = 2\left( 0 \right) = 0 \cr & \,\,\,\,\,\,{\text{If }}w = - \ln 2,{\text{ }}u = 2\left( { - \ln 2} \right) = - 2\ln 2 \cr & {\text{Then}} \cr & \int_{ - \ln 2}^0 {{e^{2w}}} dw = \int_{ - 2\ln 2}^0 {{e^u}} \left( {\frac{{du}}{2}} \right) \cr & = \frac{1}{2}\int_{ - 2\ln 2}^0 {{e^u}} du \cr & {\text{integrate}} \cr & = \frac{1}{2}\left( {{e^u}} \right)_{ - 2\ln 2}^0 \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{1}{2}\left( {{e^0} - {e^{ - 2\ln 2}}} \right) \cr & {\text{simplifying, we get:}} \cr & = \frac{1}{2}\left( {1 - \frac{1}{4}} \right) \cr & = \frac{3}{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.