Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 12

Answer

$$\frac{{dy}}{{dx}} = - 2{x^{ - \sqrt 2 - 1}}$$

Work Step by Step

$$\eqalign{ & y = \sqrt 2 {x^{ - \sqrt 2 }} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\sqrt 2 {x^{ - \sqrt 2 }}} \right] \cr & \frac{{dy}}{{dx}} = \sqrt 2 \frac{d}{{dx}}\left[ {{x^{ - \sqrt 2 }}} \right] \cr & {\text{use the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}} \cr & \frac{{dy}}{{dx}} = \sqrt 2 \left( { - \sqrt 2 {x^{ - \sqrt 2 - 1}}} \right) \cr & \frac{{dy}}{{dx}} = - 2{x^{ - \sqrt 2 - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.