Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 50

Answer

$$\frac{{{2^{\tan x}}}}{{\ln 2}} + C $$

Work Step by Step

$$\eqalign{ & \int {{2^{\tan x}}{{\sec }^2}x} dx \cr & {\text{use substitution}}{\text{: }} \cr & {\text{ }}u = \tan x,{\text{ then }}\frac{{du}}{{dx}} = {\sec ^2}x,\,\,\,\,\frac{{du}}{{{{\sec }^2}x}} = dx \cr & {\text{then}} \cr & \int {{2^{\tan x}}{{\sec }^2}x} dx = \int {{2^u}{{\sec }^2}x} \left( {\frac{{du}}{{{{\sec }^2}x}}} \right) \cr & = \int {{3^u}} du \cr & {\text{integrate using }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & = \frac{{{2^u}}}{{\ln 2}} + C \cr & {\text{replace }}\tan x{\text{ for }}u \cr & = \frac{{{2^{\tan x}}}}{{\ln 2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.