Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 4

Answer

$$\frac{{dy}}{{dx}} = 2{e^{ - 2/x}}\left( {1 + x} \right)$$

Work Step by Step

$$\eqalign{ & y = {x^2}{e^{ - 2/x}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{x^2}{e^{ - 2/x}}} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dx}} = {x^2}\frac{d}{{dx}}\left[ {{e^{ - 2/x}}} \right] + {e^{ - 2/x}}\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{we can use the formula }}\frac{d}{{dx}}{e^u} = {e^u}\frac{{du}}{{dx}}\cr &{\text{where }}u{\text{ is any differentiable function of }}x \cr & \frac{{dy}}{{dx}} = {x^2}{e^{ - 2/x}}\frac{d}{{dx}}\left[ { - \frac{2}{x}} \right] + {e^{ - 2/x}}\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{then}} \cr & \frac{{dy}}{{dx}} = {x^2}{e^{ - 2/x}}\left( {\frac{2}{{{x^2}}}} \right) + {e^{ - 2/x}}\left( {2x} \right) \cr & \frac{{dy}}{{dx}} = 2{e^{ - 2/x}} + 2x{e^{ - 2/x}} \cr & \frac{{dy}}{{dx}} = 2{e^{ - 2/x}}\left( {1 + x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.