Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 38

Answer

$$\frac{2}{3}$$

Work Step by Step

$$\eqalign{ & \int_1^e {\frac{{\sqrt {\ln x} }}{x}} dx \cr & {\text{Use substitution}}\cr &{\text{Let }}u = \ln x,{\text{ so that }}du = \frac{1}{x}dx \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = e,{\text{ then }}u = \ln e = 1 \cr & \,\,\,\,\,\,{\text{If }}x = 1,{\text{ then }}u = \ln 1 = 0 \cr & {\text{Then}} \cr & \int_1^e {\frac{{\sqrt {\ln x} }}{x}} dx = \int_0^1 {\sqrt u } du \cr & = \int_0^1 {{u^{1/2}}} du \cr & {\text{integrate}} \cr & = \left( {\frac{{{u^{3/2}}}}{{3/2}}} \right)_0^1 \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{{{1^{3/2}}}}{{3/2}} - \frac{{{0^{3/2}}}}{{3/2}} \cr & {\text{simplifying, we get:}} \cr & = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.